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Abstract. We focus on the task of hand pose estimation from egocentric view-
points. For this problem specification, we show that depth sensors are particu-
larly informative for extracting near-field interactions of the camera wearer with
his/her environment. Despite the recent advances in full-body pose estimation us-
ing Kinect-like sensors, reliable monocular hand pose estimation in RGB-D im-
ages is still an unsolved problem. The problem is exacerbated when considering
a wearable sensor and a first-person camera viewpoint: the occlusions inherent to
the particular camera view and the limitations in terms of field of view make the
problem even more difficult. We propose to use task and viewpoint specific syn-
thetic training exemplars in a discriminative detection framework. We also exploit
the depth features for a sparser and faster detection. We evaluate our approach on
a real-world annotated dataset and propose a novel annotation technique for ac-
curate 3D hand labelling even in case of partial occlusions.
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1 Introduction

Much recent work has explored various applications of egocentric RGB cameras, spurred
on in part by the availability of low-cost mobile sensors such as Google Glass, Microsoft
SenseCam, and the GoPro camera. Many of these applications, such as life-logging [1],
medical rehabilitation [2], and augmented reality [3], require inferring the interactions
of the first-person observer with his/her environment. Towards that end, we specifically
focus on the task of hand pose estimation from egocentric viewpoints. We show that
depth-based cues, extracted from an egocentric depth camera, provides an extraordi-
narily helpful cue for egocentric hand-pose estimation.

One may hope that depth simply “solves” the problem, based on successful systems
for real-time human pose estimation based on Kinect sensor [4] and prior work on
articulated hand pose estimation for RGB-D sensors [5–7]. Recent approaches have also
tried to exploit the 2.5D data from Kinect-like devices to understand complex scenarios
such as object manipulation [6] or two interacting hands [5]. We show that various
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Real-world egocentric RGB-D video (test) Synthetic egocentric RGB-D video (train)

Fig. 1. Testing (left) and training data (right). We show on the left hand side several examples of
annotated training RGBD images captured with a chest-mounted Intel Creative camera. On the
right, we present some examples of training images rendered using Poser.

assumptions about visibility/occlusion and manual tracker initialization may not hold
in an egocentric setting, making the problem still quite challenging.

Challenges: Most previous work has formulated the hand pose recognition task
as a tracking problem given RGB or RGBD sequences with manual initialization. We
would like a fully-automatic method that processes egocentric videos of daily activities,
which is even more challenging for the following reasons. First, a limited field-of-view
from an egocentric viewpoint causes hands to frequently move outside the camera view
frustum, making it difficult to apply tracking models that rely on accurate estimates
from previous frames. Second, fingers are often occluded by the hand (and possible
other objects being manipulated) in first-person viewpoints, making hand detection and
articulated pose estimation more challenging than the typically third-person viewpoint
(see Fig. 2).

Our approach: We describe a successful approach to hand-pose estimation that
makes use of the following key observations. First, motivated by biological evidence
[8], we show that depth cues provide an extraordinarily helpful signal for pose estima-
tion in the near-field, first-person viewpoints. We find that time-of-flight depth cameras
provide good depth estimates over a near-field workspace (0-70cm from the camera)
while being easily mobile. Second, the egocentric setting provides a strong viewpoint,
shape, and interacting-object prior over hand poses. We operationalize this prior by
building parametric models over viewpoints of poses of a 3D, mesh-based hand model
while interacting with common household objects. We then sample from this model
(with an egocentric prior over viewpoint and hand shape) to generate large, synthetic
depth data for training hand classifiers (see Fig. 2b). Third, sparse, discriminative
classifiers allow us efficiently evaluate a large family of pose-specific classifiers. We
classify global poses rather than local parts, which allows us to better reason about self-
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Fig. 2. System. (a) Chest-mounted RGB-D camera. (b) Synthetic egocentric hand exemplars are
used to train a multi-class cascade classifier. The depth map is processed to select a sparse set of
image locations (c) which are classified obtaining distributions over probable hand poses (d). An
estimate is made e.g., by taking the max over these distributions (e).

occlusions. Our classifiers process single frames, using a tracking-by-detection frame-
work that avoids the need for manual initialization (see Fig. 2c-e).

Evaluation: Unlike human pose estimation, there exists no standard benchmarks
for hand pose estimation, especially in egocentric videos. We believe that quantifiable
performance is important for many broader applications such as health-care rehabil-
itation, for example. Thus, for the evaluation of our approach, we have collected and
annotated (full 3D hand poses) our own benchmark dataset of real egocentric object ma-
nipulation scenes, which we will release to spur further research. It is surprisingly dif-
ficult to collect annotated datasets of hands performing real-world interactions; indeed,
many prior work on hand pose estimation evaluate results on synthetically-generated
data. We developed a semi-automatic labelling tool which allows to accurately annotate
partially occluded hands and fingers in 3D, given real-world RGBD data. We compare
to both commercial and academic approaches to hand pose estimation, and demonstrate
that our method provides state-of-the-art performance for both hand detection and pose
estimation.

2 Related Work

Egocentric hand/object manipulation: Whereas third-person-view activity anal-
ysis is often driven by human full-body pose, egocentric activities are often defined
by hand pose and the objects that the camera wearer interacts with. Previous work ex-
amined the problem of recognizing objects [9, 10] and interpreting American Sign Lan-
guage poses [11] from wearable cameras. Much work has also focused on hand tracking
[12–15], finger tracking [16], and hand-eye tracking [17] from wearable cameras. Of-
ten, hand pose estimation is examined during active object manipulations [18–22]. One
commonality behind such previous work is the use of RGB sensor input. Motivated in
part by biological evidence [8], we show that depth cues considerably aids the process-
ing of such near-field interactions.

Depth-based pose estimation: Our technical approach is closely inspired by the
Kinect system [4], which also makes use of synthetically generated depth maps for
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articulated pose estimation. Our approach differs in that we construct classifiers that
classify entire poses rather than local landmarks or parts. We posit and verify that
the numerous occlusions of articulated fingers from a wearable viewpoint requires a
more global approach, since local information can be ambiguous due to occlusions. For
this reason, temporal reasoning is also particularly attractive because one can use dy-
namics to resolve such ambiguities. Much prior work on hand-pose estimation takes
this route [23, 7, 24]. Our approach differs from these approaches in that we focus on
single-image hand pose estimation, which is required to avoid manual (re)initialization.
A notable exception is the recent work of [25], who also process single images but focus
on third-person views.

Egocentric RGB-D: Depth-based wearable cameras are attractive because depth
cues can be used to better reason about occlusions arising from egocentric viewpoints.
There has been surprisingly little prior work in this vein, with notable exceptions fo-
cusing on targeted applications such as navigation for the blind [26]. We posit that one
limitation may be the need for small form-factors for wearable technology, while struc-
tured light sensors such as the Kinect often make use of large baselines. We show that
time-of-flight depth cameras are an attractive alternative for wearable depth-sensing,
since they do not require large baselines and so require smaller form-factors.

Features: Many methods based on RGB images rely on color-based skin detection
and segmentation. Examples for hand tracking from a moving camera can be found in
[27] or more recently [17]. Earlier algorithms for hand pose estimation based on RGB
images can be found in [28]. Recent work has exploited Kinect-like depth sensors [25].
RGB and Time-of-Flight (ToF) cameras have also been combined for real-time 3D hand
gesture interaction [3] or near-realtime detailed hand pose estimation [29].

Generative vs discriminative: Generative model-based approaches have histori-
cally been more popular for hand pose estimation [30]. A detailed 3D model of the hand
pose is usually employed for articulated pose tracking [31, 5] and detailed 3D pose esti-
mation [32]. Discriminative approaches [7, 24] for hand pose estimation tend to require
large datasets of training examples, synthetic, realistic or combined [7]. Learning for-
malisms include boosted classifier trees [33] and randomized decision forests[24], and
regression forests [7]. We describe a discriminative approach based on [34], which uses
a tree-structured multi-class cascade for pose estimation and detection. We specifically
extend the work of [34] to use both RGB and Depth features.

3 Our method

3.1 Setting and Choice of the Device

We use a chest-mounted Time-of-Flight camera, an Intel Creative (see Fig. 2a), which
is particularly well-suited for short-range hand-object interactions.

TOF vs Structured Light: Much recent work on depth-processing has been driven
by the consumer-grade PrimeSense sensor [35], which is based on structured light tech-
nology. At its core, this approach relies on two-view stereopsis (where correspondence
estimation is made easier by active illumination). This may require large baselines be-
tween two views, which is undesirable for our egocentric application for two reasons;
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first, this requires larger form-factors, making the camera less mobile. Second, this pro-
duces occlusions for points in the scene that are not visible in both views. Time-of-flight
depth sensing, while less popular, is based on a pulsed light emitter that can be placed
arbitrarily close to the main camera, as no baseline is required. This produces smaller
form factors and reduces occlusions in that camera view . Specifically, we make use of
the consumer-grade TOF sensor from Creative [36].

3.2 Synthetic Training Exemplars

We represent a hand pose as a vector of joint angles of a kinematic skeleton θ. We use
a hand-specific forward kinematic model to generate a 3D hand mesh given a particular
θ. In addition to hand pose parameters θ, we also need to specify a camera vector φ
that specifies both a viewpoint and position. We experimented with various priors and
various rendering packages.

Floating hands vs full-body characters: Much work on hand pose estimation
makes use of an isolated “floating” hand mesh model to generate synthetic training
data. Popular software packages include the open-source libhand [37] and commer-
cial Poser [38, 39]. We posit that modeling a full character body, and specifically, the full
arm, will provide important contextual cues for hand pose estimation. To generate ego-
centric data, we mount a synthetic camera on the chest of a virtual full-body character,
naturally mimicing our physical data collection process. To generate data corresponding
to different body and hand shapes, we make use of Poser’s character library.

Viewpoint prior: To specify a viewpoint prior for floating hands, we simply limited
the azimuth φaz to lie between 180 ± 30 (corresponding to rear viewpoints), elevation
φel to lie between−30 and 10 (since hands tend to lie below the chest mount), and bank
φb to lie between±30. We obtained these ranges by looking at a variety of collected data
(not used for testing). For our full character models, we generate small perturbations
of the virtual chest camera mount. This simulates camera viewpoint and body variation
between individuals wearing egocentric cameras. We use forward kinematics of the arm
to naturally limit hand poses to realistic viewpoints, another benefit of full-character
egocentric modeling.

Pose prior: Our hand model consists of 26 joint angles, θ ∈ [0, 2π]26. It is difficult
to specify priors over such high-dimensional spaces. We take a non-parametric data-
driven approach. We first obtain a training set of joint angles {θi} from a collection of
grasping motion capture data [40]. We then augment this core set of poses with syn-
thetic perturbations, making use of rejection sampling to remove invalid poses. Specif-
ically, we first generate proposals by perturbing each original sample with Gaussian
noise θi + ε, where ε ∼ N(0, σI) with σ ∈ R26. The individual components within
σ are evaluated by visual inspection. Notably, we also perturb the entire arm of the
full character-body, which generates natural (egocentric) viewpoint variations of hand
configurations. Note that we consider smaller perturbations for fingers to keep grasping
poses reasonable. We remove those samples that result in poses that are self-intersecting
or lie outside the field-of-view. Example poses are shown in Fig. 2b.

Interacting objects: We wish to explore egocentric hand pose estimation in the
context of natural, functional hand movement. This often involves interactions with the
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Fig. 3. (left) Hierarchical cascade of parts. (right) Detection rates and processing time varying the
number of random cascades in the ensemble vs an exponential number of cascades. The hierarchy
shows the coarse to fine detection, showing only one part per branch for clarity. We show on the
upper right that our new detector is equivalent to an infinite number of Random Cascades (RC)
from [34]. In the bottom right we show that the RC computational cost increases linearly with
the number of cascades and that, when considering a very large number of cascades, our model
is more efficient.

surrounding environment and manipulations of nearby objects. We posit that generat-
ing such contextual training data will be important for good test-time accuracy. How-
ever, modeling the space of hand grasps and the world of manipulable objects is itself
a formidable challenge. We make use of the EveryDayHands animation library [41],
which contains 50 canonical hand grasps and objects. This package was originally de-
signed as a computer animation tool, but we find the library to cover a reasonable tax-
onomy of grasps and objects for egocentric recognition. Objects include general shapes
such as balls and cylinders of varying size, as well as common everyday objects includ-
ing utensils, phones, cups, etc. We apply our rejection-sampling technique to generate
additional valid interacting object-hand grasp configurations, yielding a final dataset of
10,000 synthetic egocentric hand-object examples (see examples in Fig. 1).

3.3 Hierarchical Cascades (past work)

We would like a hand pose detector that simultaneously performs hand detection and
pose estimation. We describe an approach based on the multi-class rejection-cascade
classifiers of [34]. We review the basic formulation here, but refer the reader to [34]
for further detail. From a high-level, both detection and pose estimation are treated as
a K-way classification problem, with classes specifying one of K discrete poses or the
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background. TheK+1-way classifier is trained using an boosting-like algorithm where
weak-classifiers are “parts” classifiers trained using linear SVMs defined on localized
HOG features within a scanning-window coordinate frame. A multi-way classification
strategy may require considerable amounts of training data and may be slow at test
time, since K can be large. [34] describe an approach with three crucial properties that
address these limitations, discussed below. We then describe various improvements that
apply in our problem domain.

Coarse-to-fine sharing: Parts are shared across all K pose-classes through a hi-
erarchical coarse-to-fine tree. Specifically, hierarchical K-means is used to cluster our
set of training poses into K quantized pose classes, which are naturally arranged in a
hierarchical tree with K leaves. The ith node in this tree represents a coarse pose class;
a visualization is shown in Fig. 3. Given an image window x, a binary classifier tuned
for coarse pose-class i is defined as:

fi(x) =
∏

j∈ancestors(i)

hj(x) where hj(x) = 1[wT
j x>bj ] (1)

where the ancestors of node i include i, and 1 is the indicator function (evaluating to 1
or 0). Each binary “weak classifier” hj(x) is a thresholded linear function (trained with
a linear SVM) that is defined on localized HOG features extracted from a subwindow
of x. This allows us to interpret wj as a zero-padded “part” template. Parts higher in
the tree tend to be generic, and used across many pose classes. Parts lower in the tree,
toward the leaves, tend to capture pose-specific details.

Rejection cascades: At test time, the above set of hierarchical classifiers can natu-
rally be implemented as a rejection cascade with a breadth-first search through the tree.
This can be readily seen by rewriting (1) recursively as fi(x) = fp(x)hi(x), where p is
the parent of i. We only need to evaluate the descendants of node i if hi(x) evaluates to
1. This means we can quickly prune away large portions of the pose-space when evalu-
ating region x, making scanning-window evaluation at test-time quite efficient. Finally,
a notable byproduct is that multiple leaf classes might fire in a given image region, each
with a different leaf score. We generally report the highest-scoring pose as the final re-
sult, but show that alternate high-scoring hypotheses can still be useful (since they can
be later refined using say, a tracker).

Ensembles of cascades: To increase robustness, we would like to average predic-
tions across an ensemble of classifiers. [34] describes an approach that makes use of a
pool of weak part classifiers for each coarse-pose class (node) i:

hi(x) ∈ Hi where |Hi| =M, i ∈ N (2)

One can instantiate a tree by selecting a weak classifier (from its candidate pool Hi) for
each node i in the tree. This allows one to define an exponential number of instantiations
MN , where N is the number of nodes (coarse pose-classes) in the tree and M is the
size of each candidate pool. In practice, [34] found that averaging predictions from a
small random subset of trees significantly improved results.
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3.4 Joint Training of Exponential Ensembles

In this section, we present several improvements to [34] that apply in our problem
domain. Because of local ambiguities due to self-occlusions, we expect individual part
templates to be rather weak. This in turn may cause premature cascade rejections. We
describe modifications for jointly training weak classifiers and averaging predictions
over exponentially-large sets of cascade ensembles.

Sequential training: Notably, [34] independently learned weak classifiers (wi, bi)
by defining a positive/negative training set that is independent of other weak classifiers.
That is, all training images corresponding to node (coarse pose-class) i are treated as
positives, and all other poses are treated as negatives. Instead, we use only the training
examples that pass through the rejection cascade up to node i. This more accurately
reflects the scenario at test-time. This requires classifiers to be trained in a sequential
fashion, in a similar coarse-to-fine (breadth-first) search over nodes from the root to the
leaves. This means weak learners are trained jointly rather than independently.,

Exponentially-large ensembles: Rogez et al. [34] average votes across a small
number (around hundred) of explicitly-constructed trees. We now describe a simple
procedure for exactly computing the average over the exponentially-large set of MN .
By averaging over a large set, we reduce the chance of a premature cascade rejection.
Our insight is that one can compute an implicit summation (or average) over the set by
caching partial summations. Assume nodes are numbered in breadth-first order, such
that node 1 is the root. As before, we will iterate over nodes in a breadth-first, coarse-
to-fine manner. We now apply all Hi weak classifiers and keep a record of the number
that fire ni:

ti = tpni where p = parent(i), ni =
∑

hi(x)∈Hi

hi(x) (3)

For any node i, the fraction of partial hierarchies (constructed from the root to node i)
that vote for node i are given by the ratio ti

MD(i) , where D(i) is the depth of node i.
We omit the fairly straightforward proof due to lack of space. Hence the ratio for leaf
nodes i yields the final set of (fine-scale) pose-class votes. Notably, once we reach an
internal node for which no weak classifiers fire ni = 0, then all of its descendants must
generate votes ti = 0, meaning that they need not be evaluated. This still allows for
efficient run-time search (see Fig. 3).

Features: We experiment with two additional sets of features x. Rogez et al. [34]
originally defined their model on oriented gradient histograms on RGB (HOG-RGB).
We also evaluated oriented gradient histograms on depth images (HOG-D). While not
as common, such a gradient-based depth descriptor can be shown to capture histograms
of normal directions (since normals can be computed from the cross product of depth
gradients) [42]. For depth we use 5x5 HOG blocks and 16 signed orientation bins.

3.5 Sparse Search

Two assumptions can be leveraged to effectively tackle egocentric hand detection in
RGB-D images: 1) hands must lie in a valid range of depths, i.e., hands can not appear
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3rd-person hand detection 3rd-person finger tip detection Egocentric hand detection Egocentric finger tip detection

(a) (b) (c) (d)

Fig. 4. Numerical results for 3rd-person (a-b) and egocentric (c-d) sequences. We compare our
method (tuned for generic priors) to state-of-the-art techniques from industry (NITE2 [43] and
PXC [36]) and academia (FORTH [23]) in terms of (a) hand detection and (b) finger tips de-
tection. We shade the 95% confidence interval obtained from the statistical bootstrap. We refer
the reader to the main text for additional decription, but emphasize that (1) our method is com-
petitive (or out-performs) prior art for detection and pose estimation and (2) pose estimation is
considerably harder in egocentric views.

further away from the chest-mounted camera than physically possible and 2) hands
tend to be of a canonical size s. These assumptions allow for a much sparser search
compared to a classic scanning window, as only “valid windows” need be classified. A
median filter is first applied to the depth map d(x, y). Locations greater than arms length
(75 cm) away are then pruned. Assuming a standard pinhole camera with focal length
f , the expected image height of a hand at valid location (x, y) is given by Smap(x, y) =
s
f d(x, y). We apply our template classifier to valid positions on a search grid (16-pixel
strides in x-y direction) and quantized scales given by Smap, visualized as red dots in
Fig. 2c.

4 Experiments

Dataset: We have collected and annotated (full 3D hand poses) our own bench-
mark dataset of real egocentric object manipulation scenes, which we will release to
spur further research 1. We developed a semi-automatic labelling tool which allows to
accurately annotate partially occluded hands and fingers in 3D. A few 2D joints are first
manually labelled in the image and used to select the closest synthetic exemplars in the
training set. A full hand pose is then created combining the manual labelling and the
selected 3D exemplar. This pose is manually refined, leading to the selection of a new
exemplar, and the creation of a new pose. This iterative process is followed until an
acceptable labelling is achieved. We captured 4 sequences of 1000 frames each, which
were annotated every 10 frames in both RGB and Depth. We use 2 different subjects
(male/female) and 4 different indoor scenes. We invite the reader to view videos in our
supplementary material.

1 Please visit www.gregrogez.net/
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Evaluation: We present numerous evaluations for both hand detection and pose es-
timation. A candidate detection is deemed correct if it sufficiently overlaps the ground-
truth bounding-box (in terms of area of intersection over union) by at least 50%. We
evaluate pose estimation with 2D-RMS re-projection error of keypoints. However, some
baseline systems report the pose of only confident fingers. In such cases, we measure
finger-tip detection accuracy as a proxy for pose estimation. For additional diagno-
sis, we categorize errors into detection failures, correct detections but incorrect view-
point, and correct detection and viewpoint but incorrect articulated pose. Specifically,
viewpoint-consistent detections are detections for which the RMS error of all 2D joint
positions falls below a coarse threshold (10 pixels). Conditional 2D RMS error is the
reprojection error for well-detected (viewpoint-consistent) hands. Finally, we also plot
accuracy as a function of the number of N candidate detections per image. With enough
hypotheses, accuracy must max out at 100%, but we demonstrate that good accuracy is
often achievable with a small number of candidates (which may layer be re-ranked, by
say, a tracker).

Parameters: We train a cascade model trained with K = 100 classes, a hierarchy
of 6 levels and M = 3 weak classifiers per branch. We synthesize 100 training images
per class.

Third-person vs egocentric: We first evaluate our method (trained with a generic
prior) for the tasks of third-person and egocentric hand analysis (Fig. 4). We compare
against state of the art techniques from industry [43, 36] and academia [23]. Because
a general prior span a larger range of viewpoints and poses, we train a model with
K = 800 classes for this experiment. We only present egocentric results for our method
and PXC, since the other baselines (FORTH and NITE2) are trackers that fail catas-
trophically on egocentric sequences where hands frequently leave the field-of-view.
Moreover, because some baselines only report positions of confident fingers, we use
finger-tip detection as a proxy for pose estimation. We conclude that (1) hand pose esti-
mation is considerably harder in the egocentric setting and (2) our (generic-prior) pose
estimation system is a state-of-the-art starting point for our subsequent analysis.

Pose+viewpoint prior: In Fig. 5, we show that an egocentric-specific pose and
viewpoint prior outperforms the generic prior from Fig. 4. In general, a viewpoint prior
produces a marginal improvement, while a pose prior considerably improves accuracy
in all cases. With a modest number of candidates (N = 10), our final system produces
viewpoint-consistent detections in 90% of the test frames with an average 2D RMS error
of 5 pixels. From a qualitative perspective, this performance appears accurate enough
to initialize a tracker. Our results suggest that our synthesis procedure from Sec. 3.2
correctly models both viewpoint and pose priors arising in egocentric settings.

Ablative analysis: To further analyze our system, we perform an ablative analysis
that turns “off” different aspects of our system: sequential training, ensemble of cas-
cades, depth feature, sparse search and different priors (viewpoint, pose, objects). Hand
detection and conditional 2D hand RMS error are given in Fig. 6. Viewpoint prior, pose
prior, depth HOG features and our new sequential training algorithm are key aspects
in terms of performance. Turning these parameters off decreases the detection rate by
a substantial amount (between 10 and 30%). Modeling objects produces better detec-
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t!

VP Detection (PR) 2D RMSE (N candidates) VP Detection (N candidates) Cond 2D RMSE (N candidates)

(a) (b) (c) (d)

Fig. 5. Quantitative results for varying our priors evaluated with respect to (a) viewpoint-
consistent hand detection (ROC curve), (b) 2D RMS error, (c) viewpoint-consistent detections
and (d) 2D RMS error conditioned on viewpoint-consistent detections. Please see text for detailed
description of our evaluation criteria and analysis. In general, egocentric-pose priors considerably
improve performance, validating our egocentric-synthesis engine from Sec. 3.2. When tuned for
N = 10 candidates per image, our system produces pose hypotheses that appear accurate enough
to initialize a tracker.

tions, particularly for larger numbers of candidates. In general, we find this additional
prior helps more for those test frames with object manipulations.

Classifier design: Our new sequential training of parts significantly outperforms
the independent training of [34] by 10-15% (Fig. 6). Our exponentially-large ensemble
of cascades and sparse search marginally improve accuracy but are much more efficient:
in average, the exponentially-large ensemble is 2.5 times faster than an explicit search
over a 100-element ensemble (as in [34]), while the sparse search is 3.15 times faster
than a dense grid. Hence our final classifier significantly improves upon the accuracy
and speed of [34], which uses a default of 100 random, independently-trained cascades
evaluated on a dense grid of RGB features.

Qualitative results: We invite the reader to view our supplementary videos. We
illustrate successes in difficult scenarios in Fig. 7 and analyze common failure modes
in Fig. 8. Please see the figures for additional discussion.

5 Conclusion

We have focused on the task of hand pose estimation from egocentric viewpoints. For
this problem specification, we have shown that TOF depth sensors are particularly in-
formative for extracting near-field interactions of the camera wearer with his/her envi-
ronment. We have proposed to use task-specific synthetic training exemplars, trained
with object interactions, in a discriminative detection framework. To do so efficiently,
we have exploited a simple depth cue for fast detection. Finally, we have provided an
insightful analysis of the performance of our algorithm on a new real-world annotated
dataset of egocentric scenes.
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VP Detection (N candidates) Cond 2D RMSE (N candidates)

(a) (b)

Fig. 6. We evaluate performance when turning off particular aspects of out system, considering
both (a) viewpoint-consistent detections (b) 2D RMS error conditioned on well-detected hands.
When turning off our exponentially-large ensemble or synthetic training, we use the default of 100
independently-trained cascades as in [34]. When turning off the depth feature, we use a classifier
trained on aligned RGB images. Please see the text for further discussion of these results.
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